PATIENT CARE AND MRI SAFETY

Module Seven

Biological Considerations

- There are no reported adverse biological effects of extended exposure to MRI.
- However, several inconsequential and reversible effects of electromagnetism can be observed.

Static Magnetic Fields

- Many factors cause a risk when performing MRI on patients with ferromagnetic materials in their body:
 - strength of the static and gradient fields
 - degree of magnetism of the object
 - the mass of the object
 - the geometry of the object
 - the location and orientation of the object
 - the length of time the object has been in

Static Fields Below 2 T

- At fields below 2 T reversible abnormalities have been noted on ECGs.
- An increase in the amplitude of the T-wave due to the magnetohydrodynamic effect.
- When a conductive fluid, such as blood, moves across a magnetic field it results in the system triggering off the T - wave rather than the Rwave.

Heating

- Studies showed that patient exposed to field strengths of 1.5 T:
- 60 minutes 0.1°C increase in body temperature
- 20 minutes 0.03°C increase in body temperature

Static Fields above 2.0 T

- Some reversible biological effects observed at 2.0 T and above:
 - fatigue
 - headaches
 - hypotension
 - accounts of irritability

Static Fields above 2.0 T

- Some reversible biological effects observed at 2.0 T and above.
 - The effects of magnetic interaction energy and cell orientation.
 - Certain molecules (such as DNA) and cellular subunits (such as sickled red cells) have magnetic properties that vary with direction.
- FDA has cleared static magnetic field strengths up to 8 Tesla for clinical use in humans as "non-significant risk".

Screening

- Metallic foreign materials within a patient must be identified before MR imaging.
 - Motion or displacement of these objects may result in injury to the patient.
 - We rely principally on clinical history.

MR Safe

- An item that poses no known hazards resulting from exposure to any MR environment. MR Safe items are comprised of materials that are electrically nonconductive, nonmetallic and nonmagnetic.
 - http://www.usa.philips.com/healthcare/education
 -resources/publications/fieldstrength/mri-and-mrconditional-implants

MR Conditional

- An item with demonstrated safety in the MR environment within defined conditions. At a minimum, address the conditions of the static magnetic field, the switched gradient magnetic field and the radiofrequency fields. Additional conditions, including specific configurations of the item, may be required.
- Conditional 1 8
 - http://www.usa.philips.com/healthcare/education
 -resources/publications/fieldstrength/mri-and-mr conditional-implants

MR Unsafe

- An item which poses unacceptable risks to the patient, medical staff or other persons within the MR environment.
- MR Unsafe 1 & 2

 http://www.usa.philips.com/healthcare/education
 -resources/publications/fieldstrength/mri-and-mrconditional-implants

Implanted Devices

- Electrically
- Magnetically
- Mechanically activated and
- Electrically conductive implanted devices
 - Certain implanted devices are not safe for MR imaging.
 - The function of such implants is impaired by the magnetic field, therefore patients with such devices should not be examined with MR.

Equipment

- A wide variety of MR-compatible monitoring devices are available.
- MR-compatible anesthesia machines and respirators are also available.
- An important point is that electronic monitoring devices are no substitute for direct monitoring.

Gradient Magnetic Field (Time-Varying)

 There is concern with nerves, blood vessels, and muscles that act as conductors in the body.

- Faraday's Law of Induction
 - states that changing magnetic fields induce electrical currents in any conducting medium.

Gradient Magnetic Field (Time-varying)

- Induced currents are proportional to:
 - the material's conductivity
 - the rate of change of the magnetic field and
 - the radius of the inductive loop.
- This effect is determined by factors such as:
 - pulse duration
 - wave shape
 - repetition pattern
 - the distribution of the current in the body

Biological Effects

- Vary with current amplitude range from:
 - reversible alterations in vision,
 - to irreversible effects of cardiac fibrillation,
 - to alterations in the biochemistry of cells and fracture union.
 - Visual effects may occur when retinal phosphenes are stimulated by induction from TVMF.

Acoustic Noise

- As current is passed through the gradient coils acoustic noise is created.
- Although within recommended safety guidelines, it can cause some reversible and irreversible effects.
- Communication interference, transient and possible permanent hearing loss.
- Earplugs are an acceptable prevention and should be used regularly.

Radiofrequency Fields (RF)

- Exposure to radiofrequency occurs as the hydrogen nuclei are subjected to an oscillating magnetic field.
- As the energy levels of frequencies used is relatively low, the predominant biological effect of RF irradiation absorption is the potential heating of tissue.

Specific Absorption Rate (SAR)

- MR systems cannot measure RF exposure, therefore it is necessary to measure the RF absorption.
- This is manifested as tissue heating and the patient's ability to dissipate excess heat.
- Energy dissipation can be described in terms of Specific Absorption Rate (SAR).

Specific Absorption Rate (SAR)

- SAR, expressed in Watts/kg, is a quantity that depends on:
 - induced electric field
 - pulse duty cycle
 - tissue density
 - conductivity
 - patient size
 - SAR is used to calculate expected increase in body temperature during an examination.

Specific Absorption Rate (SAR)

- In the US the recommended SAR level for imaging is:
- 4 W/kg for the whole body
- The SAR limit levels should never be exceeded.

RF Antennae Effects

- Radio frequency fields can be responsible for significant burn hazards due to electrical currents that are produced in conductive loops.
- Coupling of a transmitting coil to a receive coil may also cause severe thermal injury.

Pregnant Patients

- There are no known biological effects of MRI on fetuses. There are mechanisms that could potentially cause adverse effects.
 - Cell undergoing division, during the first trimester of pregnancy, are more susceptible.
 - FDA requires labeling of MR systems to indicate the safety of MR when used to image the fetus and infant.
 - However official guidelines
 have not been set.

Pregnant Patients

- In general, it has been suggested that any examination of pregnant patients should be delayed until after the first trimester.
- Then a written consent form should be signed by the patient before the exam.

Pregnant Employees

- MRI facilities must establish individual guidelines for pregnant employees in the magnetic resonance environment.
- The majority have determined that pregnant employees can safely enter the scan room and leave while the RF and gradient fields are employed.

Implants and Prostheses

- Metallic implants pose serious effects which include:
 - torque
 - heating
 - artifact on MR images.
- Before imaging a patient, any surgical procedures the patient has undergone prior to the MR examination, must be identified.

Torque and Heating

- Some metallic implants have shown considerable torque when placed in the presence of a magnetic field.
- Heating experiments have not shown excessive temperature increases in implants.

Aneurysm Clips

- Some of the aneurysm clips tested displayed ferromagnetic qualities.
- Clip motion may damage the vessel, resulting in hemorrhage, ischemia, or death.
- It is recommended that the type of clip is emphatically non-ferrous and be identified before scanning.

Hemostatic Vascular Clips Heart Valves

- Hemostatic Vascular Clips
 - Should be evaluated ex-vivo prior to the exam although none of the clips evaluated showed deflection.
- Heart Valves
 - Tests showed negligible deflection to the magnetic field. The deflection is minimal compared with normal pulsitile cardiac motion.
 - Although considered MR safe, careful screening for valve type is advised.

Intra-vascular Coils, Filters and Stents

- These devices usually become imbedded in the vessel wall after several weeks and are unlikely to become dislodged.
- Therefore it is considered MR safe to perform MR imaging provided a reasonable period of time has elapsed after implantation.

Otologic Implants

 Cochlear implants are attracted to magnetic fields and are magnetically and electronically activated.

- They are mostly MR unsafe to MR exams.

 Many Otologic Implants are MR Safe or MR Conditional

Intra-ocular Ferrous Foreign Bodies

- It is not uncommon for metal workers to have metal fragments or slivers located in and around the eye.
- A study demonstrated that metal fragments as small as 0.1x0.1x0.1mm can be detected on radiograph and is sufficient enough to determine the risk to a patient.

Surgical Clips

 Abdominal surgical clips are generally MR safe because they become anchored by fibrous tissue.

 They can however produce artifact in proportion to their size and can distort the image.

Halo Vests and other Devices

- Halo vests pose several risk factors which include:
 - deflection and subsequent dislodging of the halo, heating due to RF absorption
 - electrical current induction within the halo rings
 - electrical arching
 - severe artifact consequences.
 - Non-ferrous and non-conductive halo vests which are MR compatible are commercially available

Claustrophobia

- It is a <u>condition</u> that commonly affects patients, not a contraindication.
 - RF heating, gradient noise, and the confines of the magnet itself, add to the reaction.
- Reduce the incidence of claustrophobia.
 - Controllable air movement within the bore, good patient contact and education should help to reduce the reactions.
 - Open Architecture.

Gadolinium

- A rare earth metal or 'heavy metal'
- Toxic if not chelated.
- Ionic and Nonionic
- Shorten both T1 and T2 relaxation times

Current Applications

 Gadolinium has proven invaluable in imaging the central nervous system because of its ability to pass through breakdowns in the blood-brain barrier (BBB).

Current Applications

- tumor pre and post surgery
- lesions with abnormal vascularity
- pre- and post-radiotherapy
- infection, infarction, inflammation
- liver (hemangiomas); renals
- post-traumatic lesions
- post-operation lumbar disc
- MR Angiography
- Previous Surgery
- History of Cancer

Contraindications

- Hematological disorders such as:
 - -hemolytic anemia
 - -sickle cell anemia
 - Pregnancy
 - -Compromised renal function
 - -GFR < 30
 - -Acute Kidney Injury (AKI)

Contrast Reactions

- mild transitory headache
- nausea
- vomiting
- hypotension gastro-intestinal upset
- rash
- deaths have been reported.

Elimination of Gadolinium

- Approximately 80% of gadolinium is excreted by the kidneys in three hours.
- 95.5% eliminated primarily in urine within 24 hours
- 98% is recovered by feces and urine in one week.

Nephrogenic Systemic Fibrosis

- NSF is a disease that has been linked to gadolinium-based MRI contrast administration.
- FDA as of September 2010, has issued new policy regarding all gadolinium MRI agents updated in 2013 (ACR Guidance Document for Safe MR Practice: 2013)
- The revised labeling is specific to certain manufacturers however there are guidelines for all agents.

NSF – Black Box Warning

- The first black box warning was issued in 2007 to address the growing concern about the devastating disease.
- The warning requires screening of the patient prior to administration of any MR contrast agent.
- The warning also comes with utilization restrictions.

NSF

- According to FDA warnings these agents are not to be administered to patients with chronic, severe kidney disease (defined by a glomerular filtration rate (GFR) of less than 30 mL/min/1.73m²) or acute kidney injury.
- Patients are to be screened for acute kidney injury and other conditions that may reduce kidney function.

NSF

- The FDA now requires specific patient screening and kidney function tests for patients at risk for NSF before being administered a gadolinium with MRI.
- The requirements include avoiding administration for patients at risk, specifically those who would have problem eliminating the drugs...

NSF

- ...unless the diagnostic information from the contrast-enhanced MRI is essential and not available with non-enhanced MRI or other imaging modalities.
- Users are instructed to screen patients for acute kidney injury and other conditions that may reduce renal function.
- A GFR test is required for at risk patients.