

EARLY MILESTONES IN MAMMOGRAPHY
1913 - Albert Solomon, a surgeon in Berlin, uses a conventional X-ray machine to visualize breast cancers in 3,000 mastectomy specimens.
1949 - Uruguayan Raul Leborgne emphasizes the need for breast compression to identify calcifications.
1956 - Robert Egan, a radiologist in Houston, introduces dedicated film for mammography to produce simple and reproducible images with improved detail.
1966 – The first dedicated mammography system is introduced.
1971 – Commercial introduction of xeromammography
1980 – Introduction of single emulsion film; 2x faster at significantly lower dose

WHAT ABOUT THIS?

- Usually done when a patient had a very large palpable mass
- Limited productivity; 4-5 patients imaged per day
- Limited to CC and MLO views; no ability to do extra diagnostic views

If you remember this, I know your age!

FDA Approval

- > Approvable Letter
- > 510K—manufacturer "claims" product is substantially equivalent----used for proven technology-Today
- > PMA---manufacturer "proves" product is substantially equivalent----used for new technology

DEDICATED MAMMOGRAPHY SYSTEMS

- The first systems developed specifically for mammograms were released in 1966.
- Rotating C-arm allowed both CC and MLO views to be taken with patient in standing or sitting position, for better efficiency
- Additional diagnostic views enabled
- Image quality was limited due to limitations in film capabilities

OTHER BENEFITS

- More comfortable procedure for the patient
- Dedicated work areas for Radiologists and Technologists, for improved productivity
- Birth of the "team approach" in mammography

BUT WHAT A MESS!

- > Technologists were the original Smurfs!
- Lots of blue, on your shoes, uniforms, hands,hair etc.

A GLIMPSE OF THE FUTURE LOTHAR'S STORY

- As a testimonial of faith in their xeromammography system, Xerox offered free mammograms to female employees in the breast cancer at-risk age group.
- > ONE non-symptomatic woman was indeed diagnosed with breast cancer

And so the seeds of a screening program were sown

IMPROVEMENTS IN XEROMAMMOGRAPHY

- In 1985, xeromammography changed from blue powder toner to black liquid toner
- This resulted in substantial dose reductions (and cure of Smurf-syndrome in technologists)

Lothar Jeromin with low-dose xeromammography system at RSNA 1985

80s AND 90s PROFICIENCY DEVELOPMENT

- Worldwide acceptance of mammography as the first line of defense
- Radiologists became MAMMOGRAPHERS and in many facilities multitasked
- Technologists began to seek out specialized training courses
- > Administrators & Technologists worked together on creating "The Breast Center"
- MQSA enacted to ensure consistently high quality in all mammography facilities

AT THE SAME TIME

- Single emulsion film for use in mammography was being introduced, with the promise of providing faster processing, improved image quality, and significantly decreased dose
- By 1986, screen-film mammography was being used by more than half of all radiologists
- Production of xeromammography was halted in 1989, due to declining sales
- Screen-film mammography became the gold standard in the late 1980's – early 1990's

MILESTONES IN MODERN MAMMOGRAPHY

- 1985 Declaration of Breast Cancer Awareness Week, which led to Nation Breast Cancer Awareness Month
- 1988 Congress passes legislation to provide annual screening mammography benefit for Medicare recipients
- 1990 Breast and Cervical Cancer Mortality Prevention Act implemented to provide free or low cost mammograms and pap smears to low-income women
- 1998 First Computer Aided Detection (CAD) system for mammography approved by FDA
- 1999 National Mammography Quality Standards Act
 implemented
- 2000 First Full Field Digital Mammography system approved by FDA

Breast Cancer Awareness has led to an intensified movement to promote lifesaving early detection by

RADIOLOGISTS TECHNOLOGISTS PHYSICISTS

Recall Reduction Superimposed Tissue Examples

C-View

- 2D reconstruction algorithm
- Eliminates the need for a 2D mammogram
- Creates synthesized images from single tomosynthesis scan
- Reduces dose
- Additional cost

GE SenoClaire

- Step and shoot mode preserves microcalcification sharpness and avoids image blur, since the tube makes a complete stop for each of nine exposures
- Anti scatter solution designed for tomosynthesis, the SenoClaire grid in 3 D reduces scattered radiation while preserving dose and performance
- SenoClaire uses ASIR $\textcircled{\sc 8}$ -A calcification correction reconstruction algorithm

Ultrasound

- Began in the 1950's
- Incorporated the use of A mode technology
- Immersion, compression, and contact transducers for sonographic breast imaging continued through the early 1960's
- In the late 1960's and early 1970's, B-mode transducers with frequencies ranging between 1.5 MHz to 10.0 MHz produced images that could differentiate types of breast tissues

ACRIN 6666-ABUS Study

- 21 sites
- 2809 women (at least heterogeneously dense in one quadrant)
- Mammography and physician performed handheld full breast ultrasound
- Diagnostic yield of mammo vs. mammo plus ultrasound

Ultrasound

- Up until the early 2000's, breast sonography was used to differentiate between solid and cystic masses.
- Today, breast sonography uses highfrequency, high resolution, real time systems.
- Transducers should be 10 MHz or higher
- ABUS-Automated Breast Ultrasound System

ACRIN 6666

- Physicians underwent consistent training
- 20 minutes avg. scan time plus interpretation
- Mammography alone 7.6/1000 cancers detected
- Mammography plus US 11.8/1000
- 12 cancers detected by US alone

Ultrasound

- An important adjunct to mammography
- Screening tool for dense breasts?

ABUS

- Automatically scans a woman's breast capturing multiple images
- Displays them in 3-D for a radiologist review
- Ideal for women with dense breasts where effectiveness of mammography may be limited

Reverse Curve Transducer

- Creates a uniform compression across the entire breast
- Enables a greater penetration due to the convergent scan line geometry
- Improves detail resolution at depth
- Anatomically correct

 The AWBUSTM articulating arm, which uses the transducer of your ultrasound system, provides whole breast coverage while still allowing the operator to adjust the angle and pressure of the transducer

Breast Density Challenges

- Challenge of determining breast density is that it is based on a 2D image as opposed to the breast actually being a 3 dimensional organ that varies in size, shape, and composition
- An area that appears almost white on a mammogram could be a single highly dense area or several densities overlying each other
- Density can be evenly distributed or the area near the skin could be dense while the center of the breast could be largely replaced by fatty tissue

Breast Density Software

- Determines the density of the tissue
- It is the volume of the dense breast tissue divided by the volume of the breast and then multiplied by 100
- The breast density will be consistent and used to detect early breast cancers by picking the first sign of change

Breast Density

- Has received a lot of attention lately
- Linked to an increase in cancer risk
- Need for accurate, reproducible density measurement
- Density has historically been measured by radiologists comparing the light and dark parts of the mammogram
- This method is operator dependent and is very subjective

Elastography

- A small amount of pressure is applied to the breast, just enough to move it slightly.
- With the pressure applied, the ultrasound system takes another image
- A computer than takes the two images and compares how elastic the different regions are
- A hard, inflexible lump is almost always a carcinoma. A flexible lump is usually benign.

PET

- Physiologic image to detect cancer or cancer therapy results
- Indicates if cells are active and growing or inactive and shrinking
- A molecule is tagged with a positron emitting isotope (Radioactive substances combined with a natural body compound)
- 18-F fluorodeoxyglucose (a probe)
- Radioactive 18-F tagged with a glucose

PET Scan

- Positrons annihilate nearby electrons, emitting photons
- Photons are detected by the scanner
- Cancer accumulates glucose more than normal tissue (glucose metabolism)
- Patient prep is required (fasting, limited exercise)
- 45-90 minutes rest post injection
- 30-45 minutes scan time

PET Scan

- High FP (esp. lobular and well differentiated Ca)
- High Cost: Cyclotron is needed near PET, isotopes are short lived (hours)
- Combine functional imaging of PET with anatomical imaging of CT

PEM

- Following a 4 hour fast, serum blood is drawn to determine blood glucose level
- 10mCi FDG is injected intravenously and imaging is acquired one hour later
- Imaging is obtained in a similar manner as mammography
- Breast is imaged with slight compression

PEM

- Nuclear medicine exam that uses intravenous injectable FDG (fluorodeoxyglucose)
- A glucose analog that accumulates in glucose avid cells
- Accumulates in both inflammatory and cancerous states

PEM

- Great value in preoperative identification of non-invasive breast cancer (DCIS)
- DCIS accounts for 30% of newly diagnosed patients
- DCIS is often difficult to quantitate with mammography and MRI
- Used for preoperative surgical staging

PEM

- Dose 1.4-7mSv
- Approx \$800K purchase price
- Reimbursement is controversial
- \$1000 \$2000
- Need to improve the markers (FDG) to improve sensitivity

Molecular Breast Imaging

- Scintimammography FDA approved 1997
- Traditional multi-purpose gamma camera
- Indicated for planar imaging to assist mammography
- No significant difference in detection fatty vs. dense breasts
- Limitation with lesions less than 1 cm
- Positioning an issue to image the entire breast

PEM

Reimbursed for:

- Pre-surgical planning and staging
- Monitoring for recurrence
- Neo-adjuvant therapy
- Equivocal exams following diagnostic workup

Scintimammography/Breast Specific Gamma Immaging

- Uses a radioactive tracer that "lights" up any areas of cancer inside the breast-
- Tracer is injected into the body through a vein in the arm
- Breast cancer cells take up the radioactive substance much more than normal cells do
- A nuclear medicine scanner that scans the breast looking for areas where the radioactive substance is concentrated

MBI-BSGI/Scintimammography

- Imaging performed 5 minutes post injection
- Breast is lightly compressed between 2 detectors
- Images are obtained in cranial caudel and mediolateral oblique projections
- Easily compared to mammography

MBI-Sensitivity

- MBI has an overall sensitivity of about 90% with a sensitivity of 82% for lesions less than 10 mm in size
- Sensitivity is lowest for lesions less than 5 mm in size
- Tumor detection does not appear to be dependent on tumor type, but rather on tumor size

Breast Specific Gamma Imaging BSGI

Brem study of 167 lesions in 146 patients: Sensitivity = 96.4% Specificity = 59.5% Purchase cost \$240K Reimbursement \$700-1200

BREAST MRI

Breast MRI

- Breast MRI the most rapidly growing segment of MR Imaging
- Improvements in MRI resolution, contrast, biopsy devices, CAD software
- American Cancer Society (ACS) recommendations published
- Clinical trials proved its worth (ACRIN 6667)

MRI Screening

- •7 studies identified missed cancers
- Improved the cancer detection rate 10-40 per 1000 of the high risk women screened
- Average 22/1000
- Specific populations benifit

ACS Guidelines

- BRCA mutation
- First degree relative with breast cancer
- Lifetime risk 20-30% as defined by BRCAPRO or other models that are family history based
- ? Radiation to the chest age 10 30 yrs
- NOT dense breasts

Breast Thermography

• Based on the principle that chemical and blood vessel activity in both precancerous tissue and the area surrounding a developing breast cancer is almost always higher than in the normal breast

Breast Thermography

- Since pre-cancerous and cancerous masses are highly metabolic tissues, they need an abundant supply of nutrients to maintain their growth
- This increases circulation to their cells by sending out chemicals to keep existing blood vessels open, recruit dormant vessels and create new ones
- This process results in an increase in regional surface temperatures of the breast

Breast Thermography

• Uses ultra sensitive infrared cameras and sophisticated computers to detect, analyze and produce high-resolution diagnostic images of these temperature and vascular changes

HOWEVER

- American Society of Breast Surgeons (ASBrS) conducted a study with results presented at their annual meeting in Phoenix in May
- The conclusion is—Thermography is not a reliable breast cancer screening tool

REASON

- Too many benign biopsies are performed based on suspicious imaging abnormalities
- Women are seeking an alternative to radiation based imaging techniques