Interpreting physicians. All physicians interpreting mammograms for the facility shall follow the facility procedures for corrective action when the images they are asked to interpret are of poor quality.

Cranial Caudal View

- Pectoralis muscle visualized in only 30 to 40% of the patients.
- When pectoralis is not included, the measurement of the PNL should be done.
- Medial tissue vs lateral tissue
- Nipple in profile
- Look for large variations in nipple location.

(page 86)
Mediolateral Oblique View

- Pectoralis muscle included to PNL
- Pectoralis muscle sufficiently wide and convex
- Retroglandular fat included (page 89)
- IMF (inframammary fold)

Nipple in Profile

- Required in one view
- If unable to get nipple in profile, you may be losing breast tissue to accomplish nipple in profile

It is important that the radiologist, medical physicist, and the quality control technologist work as a team to provide optimum quality images, which will ultimately provide the best medical care possible to the patient.

COMPRESSION
COMPRESSION

- Decreases breast thickness
- Reduces dose
- Scattered radiation
- Object unsharpness
- Motion unsharpness
- Uniform thickness

UNDEREXPOSURE

- When it is present only in the densest part of the breast will obscure lesions and microcalcifications
- AREAS OF THE FILM WITH OPTICAL DENSITIES BELOW 1.0 ARE UNDEREXPOSED
- The pectoralis muscle may have densities under 1.0, but needs to be exposed sufficiently to show underlying breast tissue

EXPOSURE

- Good viewing conditions
- Difficult to see skin and subcutaneous tissue without proper reading room lighting
- Underexposure most common problem in mammography
- Underexposure results in decreased radiographic contrast.

CONTRAST

- Defined as the differences in optical density between adjacent areas of the film
- Fatty tissue should have an optical density of at least 1.2, however densities between 1.5 and 2.0 are preferable

kVp

- In digital we are looking for a higher kVp for a harder beam.
- An increase in kVp might eliminate long exposures that could lead to motion unsharpness.
SHARPNESS

- Ability of the mammographic system to capture fine detail in an image
- Patient motion is the most common cause of image unsharpness
- Motion unsharpness is more likely to occur when the exposure times exceed 2 seconds
- Unsharpness on only one part of the image is often due to motion and can be related to non uniform compression

NOISE

- Decreases the ability of the radiologist to discern tiny structures
- Quantum Mottle—fluctuation in the number of x-ray photons absorbed at individual locations in the intensifying screen or pixels of a detector.
- The fewer x-ray photons used to make the image, the greater amount of quantum mottle. More likely on high contrast images

ARTIFACTS

- Presence of multiple artifacts is a sign of deficient quality control
- Grid lines or grid non uniformities
- Digital Artifacts

Causes of Image Unsharpness

- Patient Motion
- Compression
- Focal Spot Size
- Object to Image Receptor Distance
- Source to Image Receptor Distance

Know the Mammography Acquisition System

- Automatic Exposure Control
 - Know which setting controls which factors
 - Filter and Anode selection
 - Calibration is a must
 - Compression
Accreditation Submission

Clinical Image Review Parameters
- Positioning
- Compression
- Exposure level
- Sharpness
- Contrast
- Noise
- Artifacts
- Exam identification

Clinical Images
- The images should be examples of the facility’s best work
- The images should be from actual patients and have been formally read by the radiologist

Clinical Images
- The ENTIRE BREAST must be imaged in a single exposure on each projection.
- Any breast tissue missing will be considered an automatic failure

Clinical Images
- Each case (adipose and dense) must be negative (Birads Assessment Category 1).
- Benign cases (Birads Assessment Category 2 and Incomplete cases (Birads Assessment Category 0) should not be used
- Any questions the site should call the ACR for assistance

Radiologist Role in Accreditation
The lead interpreting radiologist must review and approve hardcopy images
LABELING

- MQSA Requirements
 - Each mammographic image shall have the following information on it in a permanent, legible, and unambiguous manner and placed so as not to obscure anatomic structures.
 - Digital images must be labeled with the MQSA required identification information
 - The ACR reviewers will evaluate this

Positioning

First Attempt **NOT GRANTED**

- First deficiency
- Facility may continue performing mammography with unit as long as they have a valid MQSA certificate
 - REPEAT not acceptable area(s) (only if more than 60 days on MQSA certificate),
 - REINSTATE by retesting all areas (if 60 days or less on MQSA certificate),

Second Attempt **NOT GRANTED**

- Second deficiency = first failure
- ACR strongly recommends facility cease performing mammography with unit
 - REINSTATE by retesting all areas (with corrective action),
 - APPEAL decision on original images (may not operate until the appeal is complete), or
 - WITHDRAW

Third Attempt **NOT GRANTED**

- Third deficiency = second failure
- ACR strongly recommends facility cease performing mammography with unit
 - REINSTATE after participating in Scheduled On-Site Survey,
 - APPEAL decision on original images (may not operate until the appeal is complete), or
 - WITHDRAW

Name and patient identifier
Date of examination
View and laterality
Facility name and location (city state and zip)
Technologist identification
Mammographic unit identification

Number One Reason for ACR Failure
The Number One Reason for ACR Failure

- POSITIONING

Thoughts to remember

- If you are stressed as the technologist positioning a patient, the patient becomes stressed.
- Whether this is your first mammogram of the day or the last….this is your patients first of this year.
- If you don’t get the breast tissue on the image, the radiologist can’t read it.

Thoughts to remember